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ABSTRACT

This study experimented with a unified scheme of stochastic physics and bias correction within a regional

ensemble model [Global and Regional Assimilation and Prediction System–Regional Ensemble Prediction

System (GRAPES-REPS)]. It is intended to improve ensemble prediction skill by reducing both random and

systematic errors at the same time. Three experiments were performed on top of GRAPES-REPS. The first

experiment adds only the stochastic physics. The second experiment adds only the bias correction scheme.

The third experiment adds both the stochastic physics and bias correction. The experimental period is one

month from 1 to 31 July 2015 over the China domain. Using 850-hPa temperature as an example, the study

reveals the following: 1) the stochastic physics can effectively increase the ensemble spread, while the bias

correction cannot. Therefore, ensemble averaging of the stochastic physics runs can reduce more random

error than the bias correction runs. 2) Bias correction can significantly reduce systematic error, while the

stochastic physics cannot. As a result, the bias correction greatly improved the quality of ensemble mean

forecasts but the stochastic physics did not. 3) The unified scheme can greatly reduce both random and

systematic errors at the same time and performed the best of the three experiments. These results were further

confirmed by verification of the ensemble mean, spread, and probabilistic forecasts of many other atmo-

spheric fields for both upper air and the surface, including precipitation. Based on this study, we recommend

that operational numerical weather prediction centers adopt this unified scheme approach in ensemble

models to achieve the best forecasts.

1. Introduction

Ensemble prediction has become one of the most

important components of numerical weather prediction

(NWP) (Buizza et al. 2018). Many methods have been

proposed for perturbing initial conditions and models

(e.g., Tracton and Kalnay 1993; Houtekamer et al. 1996;

Chen et al. 2002; Shutts 2005; Ma et al. 2008, 2015;

Berner et al. 2009; Kazuo et al. 2012; Ollinaho et al. 2017;
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Feng et al. 2014, 2018). For a complete review of current

ensemble methods, readers are referred to Du et al.

(2018). All NWP modeling systems produce two kinds

of forecast errors: random and systematic errors. The

ensemble methods are designed to deal with random

but not the systematic errors (Du 2007). Since sys-

tematic error (bias) will inversely impact the quality of

ensemble forecasts and the capability of truly assessing

an ensemble prediction system (EPS; Wang et al.

2018), it would be ideal if model bias can also be re-

duced or removed in an EPS. Currently, the removal of

model’s systematic bias is usually achieved by statisti-

cal methods and done separately and independently

as a post processing step following model integration

(e.g., Gneiting et al. 2005; Raftery et al. 2005; Monache

et al. 2006; Bakhshaii and Stull 2009; Cui et al. 2006,

2012; Du and Zhou 2011; Li et al. 2011). In other words,

the treatment of random and systematic errors cannot

be done at the same time using a single unified scheme

within an ensemble model in current NWP, which

prevents bias-corrected fields from being used in some

downstream applications (see the discussions of the

next paragraph and section 3c).

Very recently, we introduced a three-dimensional

wholesale-like dynamical method able to remove sys-

tematic model bias for all variables at the same time, as

an integral part of model integration (Chen et al. 2019,

manuscript submitted to Quart. J. Roy. Meteor. Soc.,

hereafter C19). As we discussed in C19, the advantage

of this dynamical bias correction approach is three-

fold: 1) convenience (the two steps of ‘‘model inte-

gration and postprocessing’’ become one step ‘‘model

integration’’), 2) improvement in forecast prod-

ucts derived from multiple variables (due to consis-

tency among the variables), and 3) the capability of

initializing a downstream model (including two-way

nested regional modeling) with dynamically consis-

tent bias-corrected fields. This approach also makes

it possible to deal with both random and systematic

errors in a unified scheme during model integration.

In this study, we will design and test such a unified

scheme by applying the method of C19 and a sto-

chastic physics scheme at the same time to an EPS,

aiming to reduce the systematic and random errors

simultaneously. To better understand how the uni-

fied scheme works, we will compare the performances

of each of the components involved. Specifically,

the stochastic perturbed parameterization tendency

component (SPPT) alone will first be implemented

on top of a base EPS (control experiment) to exam-

ine how it impacts the performance of the EPS.

Then the bias correction component alone will be

implemented. Finally the two components will be

implemented together as a unified scheme (i.e., the

bias correction will be performed before the SPPT is

performed).1 The rest of this paper is organized as

follows. Section 2 describes the model, experiment

design, and data. The results are presented in section

3. A summary is given in section 4.

2. Model, experiment design, and data

a. The base model (GRAPES) and the control EPS
(GRAPES-REPS)

The base model in this study is a regional version of

the Global and Regional Assimilation and Predic-

tion System (GRAPES), which is developed at the

Numerical Weather Prediction Center of the China

Meteorological Administration (CMA; Chen et al.

2008). The main features of GRAPES include a fully

compressible dynamical core with nonhydrostatic

approximation, a semi-implicit and semi-Lagrangian

scheme for time integration, and a height-based ter-

rain following coordinate. The model physics in-

cludes Rapid Radiative Transfer Model (RRTM)

longwave radiation (Mlawer et al. 1997), Dudhia short-

wave radiation (Dudhia 1989), WSM-6 microphysics

(Hong and Lim 2006), Noah land surface model (Mahrt

and Ek 1984), the MRF PBL scheme (Hong and Pan

1996), and Monin–Obukhov surface layer scheme

(Noilhan and Planton 1989). Model analysis is pro-

duced by a three-dimensional variation data assimi-

lation scheme (Zhuang et al. 2014).

The control experiment (CTL) is the GRAPES-

based regional EPS (GRAPES-REPS), which has

been running operationally at CMA since August 2014

(Zhang et al. 2014). It has 15 members (1 control and

14 perturbed members) covering the China domain

(158–64.358N, 708–145.158E). The horizontal resolution
is 15 km with 51 vertical levels (model top is 10 hPa). It

runs twice a day (initialized at 0000 and 1200 UTC) out

to 72 h of forecast length with 6-hourly output (model

integration time step is 60 s). The lateral boundary

conditions (LBCs) and initial conditions (ICs) of the

GRAPES-REPS members are diversely provided

(directly downscaled) from the different members of

the GRAPES global EPS (Ma et al. 2008) that also

runs operationally at CMA. The initial condition

perturbations of the GRAPES global EPS are gen-

erated by the breeding vector (Toth and Kalnay 1997).

1 To maximize the benefit of the stochastic physics, the SPPT

should be carried out in an environment with as little error as

possible. Therefore, the bias correction is performed prior to

the SPPT.
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GRAPES_REPS applies a multiphysics approach

(Stensrud et al. 2000; Du et al. 2003) for its physics

perturbation through a combination of two bound-

ary parameterization and four convective cumulus

parameterization schemes (Table 1). The GRAPES-

REPS will be used as a reference (CTL) for the three

other experiments (Table 2) in the comparisons.

b. Stochastic physics experiment (GRAPES-REPS-
SPPT)

The first experiment (Exp. 1) is the stochastically

perturbed parameterization tendency (SPPT). SPPT

is a commonly used approach for perturbing model

physics (e.g., Buizza et al. 1999, 2018; Christensen et al.

2015). Yuan et al. (2016) applied the SPPT (Charron

et al. 2010) to the GRAPES-REPS as follows:

S
j
(t)5

ðt
t50

[A(S
j
, t)1P(S

j
, t)] dt. (1)

Equation (1) is the model integration equation. Here,

A is a state variable of ensemble member j at integration

time t, where j 5 0, 1, 2, ..., 14, and j 5 0 represents the

control forecast; B̂l(u0, 0) is the dynamic tendency, and

P is for the physics tendency.

In the SPPT scheme, the physics tendency is multi-

plied by a random field as follows:

S
j
(t)5

ðt
t50

[A(S
j
, t)1P(S

j
, t)3R

j
(l,f, t)] dt, (2)

where Rj(l, f, t) gives the random noise for member

j. Here, Rj(l, f, t) is described by the first-order Markov

chain with spherical harmonics expansion, and has a

time–space correlated continuous and smooth horizon-

tal structure, defined as

R(l,f, t)5 r1�
L

l51
�
l

m52l

a
l,m
(t)Y

l,m
(l,f). (3)

In Eq. (3), r is the mean of R(l, f, t) and al,m(t) is the

spectral coefficient as a function of t. The longitude and

latitude are represented by l and f, respectively. The

spherical harmonics is expressed by Yl,m, where l and m

indicate the total horizontal and latitudinal wavenumbers,

respectively. The termL is the spatial truncation scale (i.e.,

wavenumber) of the random field [L 5 28 in this study,

adopted from Charron et al. (2010)]. The evolution of

al,m(t) is obtained by the first-order Markov chain:

a
l,m
(t1Dt)5 e2Dt/ta

l,m
(t)1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ps2(12 e22Dt/t)

L(L1 2)

s
r
l,m
(t) .

(4)

In Eq. (4), Dt is the model integration time step (60s in

this case). The term t is the time scale of temporal cor-

relation for the random field [t 5 6 h in this study; refer

to Yuan et al. (2016)]. The term rl,m(t) is a Gaussian

distribution with a mean of 0 and variance of 1. Here,

s is the standard deviation of R(l,f, t), which is also a

Gaussian distribution (i.e., the uncertainty distribution

of a particular parameter) [s 5 0.27 in this study,

adopted from Charron et al. (2010)].

As is described in Li et al. (2008), one often needs to

keep a perturbed parameter within some specified bounds.

Thus, a stretching or dilation transformation x(R, r) is

applied toR(l,f, t) to obtain a new randomfieldR0(l,f, t),

R0(l,f, t)5 r1 x(R, r)[R(l,f, t)2 r], (5)

which can ensure that the new random field lies

within specified bounds and has the ability to modify

TABLE 1. Configuration of the control EPS (GRPAES_REPS).

Member ICs and LBCs Convective scheme PBL scheme

Control Downscaling from

global EPS member

Kain–Fritsch–Eta (Kain and Fritsch 1993; Kain 2004) MRF (Hong and Pan 1996)

Member 1 Downscaling Original Kain–Fritsch (Kain and Frisch 1990) MRF

Member 2 Downscaling Betts–Miller–Janjić (Betts 1986) MRF

Member 3 Downscaling Kain–Fritsch–Eta MRF

Member 4 Downscaling Original Kain–Fritsch MRF

Member 5 Downscaling Betts–Miller–Janjić MRF

Member 6 Downscaling Kain–Fritsch–Eta MRF

Member 7 Downscaling Original Kain–Fritsch MRF

Member 8 Downscaling Simplified Arakawa–Schubert (Pan and Wu 1995) YSU (Hong et al. 2006)

Member 9 Downscaling Betts–Miller–Janjić YSU

Member 10 Downscaling Original Kain–Fritsch YSU

Member 11 Downscaling Simplified Arakawa–Schubert YSU

Member 12 Downscaling Betts–Miller–Janjić YSU

Member 13 Downscaling Original Kain–Fritsch YSU

Member 14 Downscaling Simplified Arakawa–Schubert YSU
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its probability density function. The dilation trans-

formation is

x(R, r)5 22

12 exp

�
b
� R2 r

R0
max 2 r

�2�
12 exp(b)

. (6)

Here, r5 (R0
max 1R0

min)/2, and R0
maxand R0

min are the

upper and lower thresholds for R0(l, f, t), respectively.
In this case, R0

maxand R0
min are set to 1.8 and 0.2,

respectively, following Yuan et al. (2016). Here, b is a

constant equal to21.27 [as in Li et al. (2008)]. Thus, the

SPPT scheme is implemented by multiplying the physics

tendency term P by R0(l, f, t) as follows:

S
j
(t)5

ðt
t50

[A(S
j
, t)1P(S

j
, t)3R0

j(l,f, t)] dt. (7)

This is applied to four model state variables (zonal

wind u, meridional wind y, potential temperature u, and

specific humidity q) for the GRAPES model.

c. Bias correction experiment (GRAPES-
REPS-LTBC)

The second experiment (Exp. 2) is the linear tendency

bias correction (LTBC). This method subtracts a linear

bias tendency directly in themodel tendency equation at

each time step during model integration (C19):

S
j
(t)5

ðt
t50

[A(S
j
, t)1P(S

j
, t)2 bB

l
(S

j
, t)] dt. (8)

The B̂l(Sj, t) is the linear bias tendency estimated from

past forecasts:

B̂
l
(S

j
, t)5 slope3 time_step5

b̂

D3 3600
3 dt . (9)

Linear regression is used to estimate the bias increment

b̂ over a time window D (in hours) by linearly fitting all

bias values within the window. The dt is the model in-

tegration time step (in seconds). As discussed in C19,

for the feasibility of operational implementation as

well as the similarity in biases for all members, the

control member’s bias is used for the 14 perturbed

members (i.e., j 5 0). For a detailed description of the

LTBC and its test results, readers are referred to C19

where three different experiments were carried out.

For the reader’s convenience, an example of the esti-

mation of the linear bias tendency as well as a perfor-

mance comparison to a statistical bias correction

method is provided in the appendix. Since the first

experiment of C19 is the simplest with a good perfor-

mance, we will use that same experimental setup in thisT
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study. Specifically, the bias correction step is only en-

forced in the potential temperature field u in the

model (i.e., S 5 u) due to its dominance in the

GRAPES-EPS bias error (the detailed discussions

about the cause and the impact can be found in C19.

The bias linear tendency of potential temperature is

estimated from a 72-h window [with 13 (total) 6-hourly

bias values in it; see the appendix] and is used for all time

steps (i.e., t 5 0) throughout the model integration [i.e.,bBl(Sj, t)5 B̂l(u0, 0)]. Therefore, the second experiment

can be described by

u
j
(t)5

ðt
t50

[A(u
j
, t)1P(u

j
, t)2 bB

l
(u

0
, 0)] dt. (10)

The other state variables are the same as in the

CTL EPS.

d. Experiment combining stochastic physics and bias
correction (GRAPES-REPS-LTBC-SPPT)

The third experiment (Exp. 3) is the combination of

Exp. 1 and Exp. 2 to test the combined effects of sto-

chastic physics and bias correction on EPS performance.

Specifically, the bias correction is performed before the

stochastic physics step:

S
j
(t)5

ðt
t50

fA(S
j
, t)1 [P(S

j
, t)2 B̂

l
(S

j
, t)]

3R0
j(l,f, t)gdt, (11)

where B̂l(Sj, t)5 bBl(u0, 0) for u and B̂l(Sj, t)5 0 for

othermodel state variables (i.e., the other state variables

are the same as Exp. 1). Table 2 is a summary of the

control EPS and three experiments performed in

this study.

e. Data

The forecast experiments were carried out over the

period of a month (1–31 July 2015). The bias tendency

is calculated from the prior bias. The prior bias

was approximated by the average forecast error of

the most recently available past 10-day forecasts.

For example, the average errors of the 19–28 June

forecasts are regarded as the prior biases for the

1 July forecast (6-hourly outputs during a 72-h fore-

cast length). As mentioned above, only the control

member’s bias is calculated and used for the 14

perturbed members. The reason for using a 10-day

period to estimate bias is that it is not too short to

miss the main features of systematic error, and it is

not too long to completely filter out flow-dependent

error. It should be beneficial to retain some recent

flow-dependent bias information in the bias tendency,

given that model bias is regime dependent (Du and

DiMego 2008).

Since an analysis is the optimal estimation of truth a

model can produce, the goal of the grid-to-grid model

bias correction is to mimic its own model analysis, al-

though the analysis itself may contain bias with re-

spect to an observation (Privé et al. 2013).2 Therefore,

the GRAPES analysis is used as truth for verifying the

upper air temperature, geopotential height, wind (u and

y), and surface temperature and wind (2-m temperature

and 10-m u and y). The CMA Multisource merged

Precipitation Analysis System version 2.1 (CMPAS-

V2.1) (Pan et al. 2015) is used as truth for verifying

precipitation. All the verification results presented in

section 3 are averaged over these 31days and the model

domain (158–64.358N, 708–145.158E). Only the verifica-

tion of 0000 UTC cycle forecasts is presented since the

result from the 1200 UTC cycle is similar.

The following metrics are employed in the verifica-

tion: root-mean-square error (RMSE), systematic error

(bias), random error, spread, spread–skill relation-

ship (consistency, defined as the ratio of RMSE to

spread), continuous ranked probability score (CRPS),

reliability curve, and outlier for basic variables; and

Brier score (BS) and area of relative operating char-

acteristics (AROC) for precipitation. For a review of

ensemble verification, readers are referred to Jolliffe

and Stephenson (2003) and Du and Zhou (2017).

3. Results

a. Changes in ensemble spread and forecast error
components

For the purpose of demonstration, 850-hPa tempera-

ture is used here. Figure 1 shows the improvements to

the ensemblemean forecasts and ensemble spread for the

three experiments (the blue curve) compared to

the control EPS (the red curve). It clearly shows that

the stochastic physics SPPT boosted the ensemble spread

but only slightly improved the ensemble mean forecast

accuracy (Fig. 1a). In contrast, the bias correction LTBC

greatly reduced the ensemble mean forecast RMSE

but made little change in the ensemble spread (Fig. 1b).

When the stochastic physics and bias correction were

combined, the unified scheme took the advantages from

the both methods and noticeably improved both the

2Note: Correcting an analysis-like forecast to the observation

at a site is a task of downscaling. The difference between the grid-

to-grid bias correction and grid-to-point downscaling is often not

clearly distinguished by many. These are two different steps in an

NWP operation.
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ensemble mean forecast accuracy and ensemble diversity

(Fig. 1c). This makes the ensemble spread and the en-

semble mean forecast error about 20%–40% closer to

each other than in the control EPS (cf. the control EPS

and Exp. 3 in Fig. 1c): an improvement in the spread–skill

relationship although the underdispersion is still apparent.3

The spread increase (by the SPPT and the unified scheme)

and the RMSE reduction (by the LTBC and the unified

scheme) over the control EPS are statistically significant at

the 99.99% level (Student’s t test).

Figure 2 further analyzed the detailed aspects of the

error reduction. The top panel (Figs. 2a1–a3) is the

total error (RMSE) of the ensemble mean forecast

from the three experiments (the blue curve) compared

to that of the control EPS (the red curve), the middle

panel (Figs. 2b1–b3) is the same but is for the system-

atic error (bias), and the bottom panel (Figs. 2c1–c3)

is for the random error reduction. Since the ensem-

ble averaging is a nonlinear filtering process to cancel

FIG. 1. The comparison of ensemble mean forecast error (RMSE; dashed curve) and ensemble spread (solid

curve) between the control EPS (red) and the experiment (blue) for (a) Exp. 1 with SPPT, (b) Exp. 2 with LTBC,

and (c) Exp. 3 with the unified scheme (SPPT 1 LTBC). The 850-hPa temperature is verified.

3 Besides the insufficient sampling of model and initial condition

uncertainty, model bias plays a significant role in contributing to the

underdispersive nature of the GRAPES-REPS. For an in-depth

analysis of how model bias adversely impacts the spread–skill re-

lationship of an ensemble, readers are referred toWang et al. (2018).
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random errors, the random error reduction shown in

Figs. 2c1–c3 is defined as the difference between the

average error of individual members and the error of

the ensemble mean forecast. Figure 2 shows that the

systematic error was reduced very little by the SPPT

(Fig. 2b1) but was significantly (99.99%) reduced by

the LTBC (Fig. 2b2). As for the random error, due to

the increased diversity of ensemble members in the

SPPT run, as seen in Fig. 1, the random error was re-

duced about 40% more by the SPPT (;0.035) than

the LTBC (;0.025) (cf. the dashed curves of Fig. 2c1

and Fig. 2c2) averaged over 6–72 h. This difference is

even more significant (almost double, from 0.015 to

0.03) when the forecast length is shorter (6–36 h). After

FIG. 2. The comparison of (a1)–(a3) total (RMSE) and (b1)–(b3) systematic error (bias) of the ensemble mean forecast, and (c1)–(c3)

the random error reduction (with the dashed gray curve indicating the difference between the two curves) between the control EPS (red)

and the three experiments (blue). (left) Exp. 1 (SPPT), (center) Exp. 2 (LTBC), and (right) Exp. 3 (the unified scheme SPPT1LTBC). The

850-hPa temperature is verified.
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combining the SPPT and LTBC, the unified scheme can

significantly (99.99%) reduce both the systematic and

random errors (Figs. 2b3 and 2c3), which leads to the

largest reduction in the total error of the ensemble

mean forecast among the three experiments (Fig. 2a3).

To verify the above result related to the random error,

we employed a different independent approach to cal-

culate the random error [Eq. (12)]. Equation (12) is a

commonly used relationship among the total (RMSE),

systematic (bias), and random errors in physics (Morris

and Langari 2016):

total error25systematic error21random error2 . (12)

For each of the four EPS runs (control EPS and Exps.

1–3), we can calculate the total error and systematic

error of each member and the ensemble mean forecast.

Then, the random error can be derived from Eq. (12)

for each member and the ensemble mean. The differ-

ence between the averaged random error of individual

members and the random error of the ensemble mean

forecast reflects the random error reduction through the

ensemble averaging process for a given EPS. Figure 3

shows the random error reduction of the four EPSs. The

result confirms that the random error reduction through

ensemble averaging was significantly larger with the

stochastic physics (Exp. 1) compared to the control EPS

(Ctr-EPS), while it remained similar to the control EPS

with the bias correction (cf. Exp. 2 and Ctr-EPS). The

unified scheme (Exp. 3) performed the best (slightly

better than Exp. 1).

b. Forecast improvements

In this section we will examine how the above error

reductions translate into improvement of the probabi-

listic forecasts of various meteorological fields.

1) PROBABILISTIC FORECASTS OF TEMPERATURE,
HEIGHT, MOISTURE, AND WIND

The CRPS is commonly used to measure the close-

ness between the forecasted and observed cumula-

tive probability distributions. The closer a forecasted

probability is to the observation (either 0 or 1), the

better it is. Therefore, the CRPS becomes better

as the values become smaller, with a perfect score of

0. Figure 4 compares the CRPSs of the three ex-

periments and the control EPS for temperature,

geopotential height, specific humidity, and wind at

the 850-hPa level as well as for two surface fields (10-m

wind and 2-m temperature) over 6–72-h forecasts. For

all variables, the CRPS can be slightly improved (i.e.,

reduced) by Exp. 1 (SPPT) and greatly improved by

Exp. 2 (LTBC). This is because the center of the

probabilistic distribution has been correctly shifted

toward the observation after the removal of system-

atic error in the LTBC run. The CRPS can be further

improved on the top of the LTBC run by Exp. 3 (the

unified scheme). The statistical significance of the

improvement over the control EPS by the unified

scheme exceeds the 90% level for all variables and

forecast hours (most actually reached the 99.99%

level). In other words, the unified scheme can signif-

icantly improve the quality of the probabilistic fore-

casts of all fields.

In addition to the closeness to the observation, an-

other important property of a probabilistic forecast is

the reliability. The reliability diagram graphically mea-

sures how well the predicted probabilities (the hori-

zontal axis) of an event match its observed frequency

(the vertical axis). For a perfectly reliable probabilis-

tic forecast, the predicted probability is equal to the

observed frequency, which puts the reliability curve

along the 458 diagonal line. Deviation from the diagonal

line suggests that the predicted probability is not reli-

able. If the reliability curve lies below (above) the diagonal

line, the probability is overestimated (underestimated)

due to either a too small (large) spread of the ensemble

members or forecast biases. Figure 5 is the reliability

diagram at the forecast length of 72 h for the same

six variables as in Fig. 4. The probability thresholds

used in Fig. 5 are, respectively, exceeding 2K (850-hPa

FIG. 3. Random error reduction through ensemble averaging

(i.e., the difference between the averaged random error of indi-

vidual members and the random error of the ensemble mean

forecast), for the control EPS (black), Exp. 1 (red), Exp. 2 (green),

and Exp. 3(blue). The random error is derived from Eq. (12). The

850-hPa temperature is verified.
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FIG. 4. CRPS of the control EPS (red), Exp. 1 (black), Exp. 2 (green), and Exp. 3 (blue) for (a)T at 850 hPa, (b)H at

850 hPa, (c) q at 850 hPa, (d) V at 850 hPa, (e) U at 10m, and (f) T at 2m.
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FIG. 5. Reliability diagram of the control EPS (red), Exp. 1 (black), Exp. 2 (green), and Exp. 3 (blue) for (a) T

at 850 hPa, (b) H at 850 hPa, (c) q at 850 hPa, (d) V at 850 hPa, (e) U at 10m, and (f) T at 2m.
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T), 8 gpm (850-hPa H), 0.0002 (850-hPa q), 2m s21

(850-hPa V), 1m s21 (10-m U), and 2K (2-m T) over

climatology. For example, Fig. 5a shows that the fore-

cast probability of 850-hPa temperature exceeding

2K over climatology is much larger than the observed

frequency (i.e., overestimated) due to both an under-

dispersion in spread (Fig. 1) and a warm bias in the

forecast (Fig. 2). The SPPT (the black curve) did not

improve reliability, but the LTBC (the green curve)

and the unified scheme (the blue curve) significantly

(at the 95% level) improved the reliability compared to

the control EPS (the red curve). Similar results were

seen for the 2-m temperature (Fig. 5f) and 850-hPa

geopotential height (Fig. 5b). However, the improve-

ments from all the three experiments were not signifi-

cant for the 850-hPa moisture (Fig. 5c) and wind

(Fig. 5d) fields as well as the surface wind (Fig. 5e).

2) PROBABILISTIC FORECASTS OF PRECIPITATION

The CRPS is for continuous forecasts (such as a con-

tinuous range of rainfall). For single-category forecasts

(such as rainfall exceeding 50mm), the CRPS can be

simplified to the Brier score. BSmeasures the difference

(error) between the forecast probability and the ob-

served probability (0 or 1). A smaller BS indicates a

better forecast (a perfect score is 0.0). Figure 6 shows the

BS of the three experiments and the control EPS for

the probabilistic forecasts of 24-h-accumulated pre-

cipitation exceeding 0.1, 10, 25, 50, and 100mm for

forecast lengths of 24, 48, and 72h. Since there is almost

no skill for the 100-mm category rainfall prediction by

the GRAPES-EPS, it will be excluded in the following

discussion. There is no significant difference (less than

20% level) between the three experiments and the

control EPS at the 24-h forecast (Fig. 6a). There is a

moderately significant improvement (40% level) by the

unified scheme over the control EPS for the 10- and

25-mm categories at the 48-h forecast (Fig. 6b). The

moderately significant improvement (40% level) can

also be seen for the 10-, 25- and 50-mm categories at the

72-h forecast (Fig. 6c).

The relative operating characteristic (ROC)measures

the combined effect of the false alarm rate (FAR; the

horizontal axis ranges from 0 to 1) and probability of

detection (POD, the vertical axis ranges from 0 to 1)

for a binary forecast. A good forecast system needs to

maximize POD and minimize FAR. The area under

the ROC curve (AUR or AROC) is often calculated to

determine if a forecast has skill or not. It has no skill

when AROC is less than 0.5 (FAR . POD). A perfect

AROC is 1 (100% POD and 0% FAR). Figure 7 is the

same as Fig. 6 but for the AROC. There is a significant

improvement (90% level) of the unified scheme over the

control EPS for the 50-mm rainfall category at the 24-h

forecast (Fig. 7a). A moderately significant improvement

(75% level) for the 10- and 25-mm rainfall and a signifi-

cant degradation (90% level) for the 50-mm rainfall were

seen at the 48-h forecast (Fig. 7b). All rainfall categories

(10, 25, and 50mm) were significantly improved (60%–

98% level) at the 72-h forecast (Fig. 7c).

From the above results, we can see that the im-

provement in probabilistic precipitation forecasts

from the unified scheme generally increased as the

forecast length increased. However, compared to the

other atmospheric variables, precipitation wasmuch less

impacted by the SPPT, LTBC, and the unified schemes.

The GRAPES-REPS has very little skill in predicting

the rainfall category exceeding 100mmday21.

3) OPERATIONAL IMPLEMENTATION ASSESSMENT

SCORECARD

For an operational implementation decision, a score-

card is normally used, which verifies a more complete list

FIG. 6. Brier scores for the (a) 24-, (b) 48-, and (c) 72-h forecasts

of 24-h accumulated precipitation exceeding 0.1, 10, 25, 50, and

100mm, for the control EPS, Exp. 1 (SPPT), Exp. 2 (LTBC), and

Exp. 3 (the unified scheme).
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of fields with more measurement scores. Figure 8 shows

the scorecard used for this implementation, to assess if the

upgrade system (the unified scheme) can consistently

outperform the current system (the control EPS). In this

scorecard, six scores are computed for some isobaric

fields including geopotential height H, temperature T,

zonal wind U, and meridional wind V at 200-, 500-, 700-,

850-, and 1000-hPa levels, as well as some near-surface

fields such as 2-m temperature (T2m), 10-mwind (U10m,

V10m), and light, moderate, and heavy precipitation at

24-, 48-, and 72-h forecast lead times. These six measure-

ment scores are selected to portray a full picture of theEPS

quality for ensemble mean, forecast uncertainty and prob-

abilistic forecasts. For nonprecipitation fields the veri-

ficationmetrics areRMSE, consistency (RMSE/spread),

CRPS, and outlier; for precipitation AROC and BS are

employed.

There are a total of 294 categories in Fig. 8. The green

color indicates an improvement, the red a degradation,

and the gray is neutral (similar performance) for the

unified scheme compared to the control EPS. The sta-

tistical significance level associated with an improve-

ment or degradation is also marked on the figure. We

can see that the improvement rate is 62.6% (184/294),

the neutral rate is 35.4% (104/294), and the degradation

rate is 2.0% (6/294). All the improvements are statisti-

cally significant. Consistent with the verification results

in sections 3b(1) and 3b(2), more improvements are

seen in the height and temperature fields, and less im-

provement in the moisture field including precipita-

tion and upper-air wind. The improvements in surface

wind and temperature are also apparent. Evidently,

the overall improvement of the unified scheme over the

control EPS is overwhelming, which leads to a guaran-

teed approval of its operational implementation.

c. A side experiment

Although the theme of this study is the unified scheme

to deal with the random and systematic errors at the

same time in an ensemble model, one might be in-

terested in learning how this unified dynamical ap-

proach compares to the current two-step approach

(dynamic and statistics) in performance. To shed light

on this, we included a comparison between the dy-

namical bias correction method and a statistical post-

processing method (see Fig. A2 in the appendix). The

result shows that the dynamical method outperformed

the statistical method by about 64%. Given that the

SPPT part is the same in both approaches, the unified

scheme should also outperform the two-step approach

(i.e., the SPPT in the ensemble model integration fol-

lowed by a statistical postprocessing of model bias).

Additionally, the statistical postprocessing method

also has severe limitations. For example, only a limited

number of selected variables can be processed, and

each variable is processed independently with no dy-

namical constraints among the processed variables.

These deficiencies will cause dynamical inconsistency

among variables and prevent the bias corrected vari-

ables from being used in certain applications, such as

initializing a downstream model. In other words, per-

formance is not the sole motivation of our study but,

more importantly, the feasibility of a certain NWP

downstream application is.

4. Summary

NWP models have both random and systematic er-

rors. Ensemble perturbation methods deal with random

errors, while statistical bias correction methods deal

with systematic errors. With current NWP technology,

these two types of error cannot be dealt with together

FIG. 7. AROC for the (a) 24-, (b) 48-, and (c) 72-h forecasts of

24-h accumulated precipitation exceeding 0.1, 10, 25, 50, and

100mm, for the control EPS, Exp. 1 (SPPT), Exp. 2 (LTBC), and

Exp. 3 (the unified scheme).
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during model integration. Very recently, we introduced

a three-dimensional wholesale-like dynamical method

to remove a model’s systematic bias in all variables

during model integration (C19). This new model-

integration-based bias correction approach has made it

possible for a unified scheme to deal with both random

and systematic errors at the same time as the model

integrates. This study designed and tested such a unified

scheme with a regional ensemble model, GRAPES-

REPS, aiming to maximize the improvement in en-

semble prediction skill by reducing both random and

systematic errors at the same time in an operational

environment.

Three experiments were performed on top of the

control EPS (GRAPES-REPS). The first experiment

used only the stochastic physics SPPT (GRAPES-

REPS-SPPT). The second experiment used only the bias

correction scheme LTBC (GRAPES-REPS-LTBC). The

third experiment used both the LTBC and SPPT

(GRAPES-REPS-LTBC-SPPT). The experimental pe-

riod is 1–31 July 2015 (0000 UTC cycle) over the China

domain. The averaged result of these 31days showed that

1) The stochastic physics SPPT can effectively increase

ensemble spread, while the bias correction LTBC

had little impact. As a result, ensemble averaging of

the SPPT run can reduce random error more than

the LTBC.

2) The stochastic physics SPPT had little impact on

the systematic error, while the bias correction LTBC

can significantly reduce it. As a result, the SPPT only

slightly improved the accuracy of ensemble mean

forecasts but the LTBC greatly reduced the ensem-

ble mean forecast error.

3) By combining the stochastic physics SPPT and the bias

correction LTBC into a unified scheme, both random

and systematic errors can be significantly reduced at

the same time. As a result, the unified scheme per-

formed the best among the three experiments.

4) The CRPS scores show that the unified scheme can

significantly increase the accuracy of probabilistic

forecasts for all six selected atmospheric vari-

ables (temperature, height, moisture, and wind at

the 850-hPa level, 10-m wind, and 2-m tempera-

ture). Besides improved accuracy, the reliability

of the probabilistic forecasts was also significantly

increased for the 850-hPa temperature, 850-hPa

height, and 2-m temperature but remained about

the same for moisture and wind.

FIG. 8. The verification scorecard used for making an operational implementation decision whether an upgrade system can consistently

outperform the current system, where the RMSE and consistency are for no-precipitation forecasts and the AROC and BC are for pre-

cipitation forecasts. In this case, the upgrade system is Exp. 3 (GRAPES-REPS-LTBC-SPPT) and the current system is the control EPS

(GRAPES-REPS).Green indicates an improvement, gray is neutral, and red is a degradation. Filled triangles indicate that the differences are

statistically significant at the 99.7% level (t test); unfilled triangles indicate 95% confidence; shaded rectangles indicate 75% confidence.
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5) Relative to other atmospheric variables, the im-

provement in probabilistic precipitation forecasts

was much less with the unified scheme. However,

the improvement seemed to increase as the forecast

length increases. For example, there was no signifi-

cant improvement in BS for all rainfall categories at

the 24-h forecast; there was a moderately significant

improvement for two categories (10 and 25mm) at

the 48-h forecast and for three categories (10, 25, and

50mm) at the 72-h forecast. This trend is also

observed in terms of AROC: there was a significant

improvement for one rainfall category at 24 h and for

two categories at the 48-h forecast, while three

rainfall categories were significantly improved at

the 72-h forecast.

6) Finally a scorecard was used to assess the suitabil-

ity of the unified scheme for an operational up-

grade. The result showed that the unified scheme

can consistently outperform the control EPS. Out of

the 294 categories contained in the scorecard, the

improvement rate is 62.6% (184/294), the neutral

rate is 35.4% (104/294), and the degradation rate is

negligibly low at 2.0% (6/294). All the improvements

are statistically significant.

Further improvements to both ensemble perturba-

tion and bias correction techniques are obviously

needed to improve moisture (including precipitation)

and wind forecasts in a future study. Based on this study,

we encourage the NWP community to adopt this uni-

fied scheme approach in their EPSs to achieve the best

forecasts in operations.
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APPENDIX

Estimation of the Linear Bias Tendency and a
Comparison to a Statistical Bias Correction Method

For example, in our case of a 72-h model integration

initialized on 1 July 2015, the bias was approximated by

the average error of the past 10 days of forecasts during

the period of 19–28 June 2015 at each forecast hour. To

retain some recent season and flow-dependent bias

information, a moving 10-day (but not longer) time pe-

riod is used to estimate the bias error. Once the bias

error is available, the linear bias tendency B̂l(Sj, t) can

be estimated from the variation of bias error with fore-

cast time over a desired time windowD. The red curve in

Fig. A1 is the estimated bias error of potential temper-

ature varying with forecast hour (0–72 h at 6-h intervals)

at a model grid point. By applying a linear regression

to the 13 bias values over this 72-h window, a linear fit

of the bias tendency with time can be obtained (blue line

in Fig. A1). Using the bias increment b̂ over the time

window D (72 h in this case), the linear bias tendency

B̂l(Sj, t) over a time step dt (in seconds, dt 5 60 s in this

case) can be obtained as the following:

bB
l
(S

j
, t)5 slope3 time step5

b̂

D3 3600
3 dt , (A1)

which is the same as Eq. (9) in section 2c. The linear

bias tendency obtained is then used for all time steps

within this time window D. By repeating the above steps
on every model grid point at all model levels, a three-

dimensional B̂l(Sj, t) can be obtained at every model

integration time step for a model state variable (potential

FIG. A1. The forecast bias (red curve) of the ensemble control

member for potential temperature th (u; K) on a grid point (318N,
1148E) near the 700-hPa level over forecast hours. It is estimated from

the 0000UTC cycle forecasts during 19–28 Jun 2015 and approximated

as thebiases for the 72-hmodel integration initialized at 0000UTC1Jul

2015. The blue dashed line is the linear fit of the bias error.
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temperature in this case). Note that the selection of a

shorter time window D may include more time-evolution

information on the bias. However, C19 compared a 3-h

window with the 72-h window and found a mixed result

(improvement in some fields and degradation in other

fields). C19 also compared a multistate-variable-based

(potential temperature, wind, and pressure) experiment

with a single-state-variable-based (potential tempera-

ture only) experiment and found no obvious benefit.

As a matter of fact, we found that the single potential

temperature–based method using the 72-h window per-

formed the best overall. More research on this subject is

currently under the way to understand all these findings.

To get an idea about the relative performance of this

new bias correction method, we compared it with the

Kalman filter–based (or decaying average) statistical

bias correction method that is currently used in opera-

tions at both CMA and NCEP (Cui et al. 2012; Du and

Zhou 2011). The result from this statistical method over

the same time period (1–10 July 2015) for the 500-hPa

temperature is shown by the blue curve in Fig. A2.

Apparently, the performance of the new method (the

brown curve) is significantly better (at the 99.9% level)

than the current operational statistical method. For ex-

ample, at a 72-h forecast, the domain-averaged bias er-

ror reduction is 33.3% for the statistical method and

54.7% for the new method, which is ;64% greater re-

duction achieved by the new method than by the sta-

tistical method. This is a very encouraging result.
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